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Abstract
In this paper we confirm a conjecture of Flaschka which relates the hierarchy of
Poisson brackets and master symmetries for the Bogoyavlesky–Todasystems of
type Dn with fundamental invariants of the corresponding Lie group. The areas
investigated include master symmetries, recursion operators, higher Poisson
brackets and invariants. The results are presented both in Flaschka coordinates
(a, b) and in the natural (q, p) coordinates.

PACS numbers: 02.30.Ik, 02.20.Qs, 45.20.Jj
Mathematics Subject Classification: 37J35, 22E70 and 70H06

1. Introduction

This work is the final step in a series of papers which deal with the multi-Hamiltonian structure
of the Bogoyavlensky–Toda systems corresponding to the classical simple Lie groups of types
An,Bn,Cn and Dn. The Toda lattice is a system of particles on the line where each particle
interacts with its neighbour with an exponential force. The original Toda system with an
infinite number of particles was considered by Toda [36] in 1967. The integrability of the
system is due to Flaschka [12], Henon [16] and Manakov [25], all in 1974. The explicit
solution of the finite lattice is due to Moser [27] in 1975. We restrict our attention to the
finite, non-periodic version of the Toda lattice. The multiple Hamiltonian structure of the
Toda lattice was established in [5–7], using master symmetries. The master symmetries were
used to generate nonlinear Poisson brackets and higher order invariants. For the definition and
examples of master symmetries see [14, 30, 15].

The Toda lattice corresponds to a simple Lie algebra of type An, i.e. sl(n, C). We have to
point out that all computations in [6, 7] are performed in gl(n, C); it turns out that a second
quadratic bracket for sl(n, C) Toda does not exist. These results were duplicated in (q, p)

coordinates by Das and Okubo [10], and Fernandes [11]. In principle, their method is general
and may work for other finite-dimensional systems as well. The procedure is as follows: one
defines a second Poisson bracket in the space of canonical variables (q1, . . . , qn, p1, . . . , pn).
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This gives rise to a recursion operator. The presence of a conformal symmetry as defined
in Oevel [31] allows one, by using the recursion operator, to generate an infinite sequence
of master symmetries. These, in turn, project onto the space of the new variables (a, b) to
produce a sequence of master symmetries in the reduced space. This approach was also used
in [29] in the case of the relativistic Toda lattice.

The analogous results for Bn Bogoyavlensky–Toda were computed in [7] in Flaschka
coordinates, and in [17] in (q, p) coordinates. The Cn case is in [8] in Flaschka coordinates,
and [17] in natural (q, p) coordinates. In this paper, we deal with the Dn case which is the
most interesting and at the same time the most difficult. It is interesting because the exponents
of a simple Lie group of type Dn do not form a simple arithmetical progression as in the
An,Bn and Cn cases and it is more difficult due to the complicated structure of the root system
of Dn. As in the previous cases, the exponents of the Lie group appear through the action of
the master symmetries on the Hamiltonian vector fields.

The equations for the Toda systems under consideration will be written in the form

L̇(t) = [B(t), L(t)]. (1)

The pair of matrices L,B is known as a Lax pair. In the case of the finite nonperiodic Toda
lattice L is a symmetric tridiagonal matrix and B is the projection onto the skew-symmetric
part in the decomposition of L into skew-symmetric and lower triangular. In the case of
Bogoyavlendky–Toda systems the matrix L will lie in the corresponding Lie algebra and B
will again be obtained from L by some projection associated with a decomposition of the
Lie algebra. The decomposition plays an important role in the solution of the equations by
factorization.

In the case of a Toda lattice the Lax equation is obtained by the use of a transformation
due to Flaschka [12] which changes the original (q, p) variables to new reduced variables
(a, b). The symplectic bracket in the variables (q, p) transforms to a degenerate Poisson
bracket in the variables (a, b). This linear bracket is an example of a Lie–Poisson bracket.
The functions Hn = 1

n
tr Ln are in involution. A Lie algebraic interpretation of this bracket

can be found in [19]. We denote this bracket by π1. A quadratic Toda bracket, which we call
π2, appeared in a paper of Adler [1]. It is a Poisson bracket in which the Hamiltonian vector
field generated by H1 is the same as the Hamiltonian vector field generated by H2 with respect
to the π1 bracket. This is an example of a bi-Hamiltonian system, an idea introduced by
Magri [23]. For further details on bi-Hamiltonian systems relevant to Toda-type systems see
[11, 35, 34]. A cubic bracket was found by Kupershmidt [21] via the infinite Toda lattice. We
found the explicit formulae for both the quadratic and cubic brackets in some lecture notes by
Flaschka. The Lenard relations are also in these notes. The Lenard relations show that the
system is bi-Hamiltonian. In a situation like this, if one of the tensors is invertible one can find
a recursion operator by inverting the symplectic tensor. The recursion operator is then applied
to the initial symplectic bracket to produce an infinite sequence. However, in the case of a
Toda lattice (in Flaschka variables (a, b)) both operators are non-invertible and therefore this
method fails. The absence of a recursion operator for the finite Toda lattice is also mentioned
in Morosi and Tondo [26] where a Nijenhuis tensor for the infinite Toda lattice is calculated.

The Toda lattice has been generalized in several directions. In this paper we consider
the generalized Toda systems defined by Bogoyavlensky [2] and studied in Kostant [19] and
Olshanetsky and Perelomov [33]. The Toda system is generalized to the tridiagonal coadjoint
orbit of the Borel subgroup of an arbitrary simple Lie group. Therefore, for each simple Lie
group there is a corresponding mechanical system of Toda type. We will call such systems
the Bogoyavlensky–Toda systems. We have to point out that the original paper [2] deals with
the periodic version of the system. The methods of this paper can be used with only minor
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modifications to obtain similar results for the periodic Toda lattices but in that case the Lie
algebraic setting is Kac–Moody algebras instead of simple Lie algebras.

There is also an interesting connection with the corresponding generalized Volterra
systems also defined by Bogoyavlensky [3]. It seems that the multiple Hamiltonian structures
of the Volterra and Toda lattices are in one-to-one correspondence. Multiple Hamiltonian
structures for the generalized Volterra lattices were constructed recently by Kouzaris [20] at
least for the classical Lie algebras. The relation between the Volterra systems of types Bn and
Cn and the corresponding Toda Bn,Cn systems is demonstrated in the forthcoming paper [9].
The connection between Volterra Dn and Toda Dn is still an open problem.

In section 2 we present the necessary background on bi-Hamiltonian systems and master
symmetries. We also define the exponents of a simple Lie group.

Section 3 is a review of the classical finite nonperiodic Toda lattice. This system was
investigated in [36, 12, 13, 16, 25, 18, 28, 27]. We define the quadratic and higher Toda
brackets and show that they satisfy certain Lenard-type relations. We briefly describe the
construction of master symmetries and the new Poisson brackets as in [6, 7]. We also describe
the method of Fernandes [11].

In section 4, we define the integrable Bogoyavlensky–Toda systems associated with
simple Lie groups. We present in detail the system of type Dn. We will not present the
results for the Bn,Cn systems but we refer the reader to [7, 8, 17]. We make the computations
both in Flaschka coordinates (a, b) and also in (q, p) variables. In each case we compute
invariants, Poisson tensors, recursion operators and master symmetries. There is a sequence
of invariants H2,H4, . . . of even degree and an additional invariant of degree n. Let χi denote
the Hamiltonian vector field generated by Hi and let Z0 denote a conformal symmetry. Then
we have

[Z0, χj ] = f (j)χj .

The values of f (j) corresponding to independent χj generate all the exponents except one.
When Z0 acts on the Hamiltonian vector field χP , where P is the invariant corresponding to
the Pfaffian of the Jacobi matrix, we obtain the last exponent n − 1. For example, in the case
of D5 the exponents are 1, 3, 5, 7 and 4. The independent invariants are H2,H4,H6,H8 and
P5 where H2i = 1

2i
Tr L2i and P5 = √

det L. We obtain

[Z0, χ2] = χ2 [Z0, χ4] = 3χ4 [Z0, χ6] = 5χ6

[Z0, χ8] = 7χ8 [Z0, χP5 ] = 4χP5 .

In other words, the coefficients on the right-hand side are precisely the exponents of a
simple Lie group of type D5.

2. Background

We assume that the reader is familiar with the concept of Poisson manifold. See for example
[22, 37, 38]. Let M be a C∞ manifold equipped with two Poisson tensors π0 and π1. The two
tensors are called compatible if π0 + π1 is Poisson. If π0 is symplectic, we call the Poisson
pair (π0, π1) non-degenerate. In this case, the (1, 1)-tensor R defined by

R = π1π
−1
0 (2)

is called the recursion operator associated with the non-degenerate pair. Recursion operators
were introduced by Olver [32].

A bi-Hamiltonian system is defined by specifying two Hamiltonian functions H0,H1

satisfying

π0∇H1 = π1∇H0 (3)
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where πi, i = 0, 1, denotes the Poisson matrix of the tensor πi . The theory of bi-Hamiltonian
systems was developed by Magri [23]. He established the existence of a hierarchy of
mutually commuting functions H0,H1, . . . , all in involution with respect to both brackets.
They generate mutually commuting bi-Hamiltonian flows χi satisfying the Lenard recursion
relations. For more details see [24].

We recall the definition and basic properties of master symmetries. Consider a differential
equation on a manifold M, defined by a vector field χ . We are mostly interested in the case
where χ is a Hamiltonian vector field. A vector field Z is a symmetry of the equation if

[Z,χ] = 0.

A vector field Z will be called a master symmetry if

[[Z,χ], χ] = 0

but

[Z,χ] �= 0.

Suppose that we have a bi-Hamiltonian system defined by the Poisson tensors π0, π1 and the
Hamiltonians H0,H1. Assume that π0 is symplectic and let χ1 = χ . We define the recursion
operator R = π1π

−1
0 , the higher flows

χi = Ri−1χ1

and the higher order Poisson tensors

πi = Riπ0.

For a non-degenerate bi-Hamiltonian system, master symmetries can be generated using a
method due to Oevel [31].

Theorem 1 (Oevel). Suppose that Z0 is a conformal symmetry for both π0, π1 and H0, i.e.,
for some scalars λ,µ and ν we have

LZ0π0 = λπ0 LZ0π1 = µπ1 LZ0H0 = νH0. (4)

Then the vector fields

Zi = RiZ0 (5)

are master symmetries and we have

(a) [Zi, χj ] = (µ + ν + (j − 1)(µ − λ))χi+j (6)

(b) [Zi,Zj ] = (µ − λ)(j − i)Zi+j (7)

(c) LZi
πj = (µ + (j − i − 1)(µ − λ))πi+j (8)

(d) LZi
Hj = (ν + (j + i)(µ − λ))Hi+j . (9)

Finally, let us recall the definition of exponents for a semi-simple group G. An excellent
reference is the book by Collingwood and McGovern [4]. Let G be a connected complex simple
Lie group G. We form the de Rham cohomology groups Hi(G, C) and the corresponding
Poincaré polynomial of G:

pG(t) =
∑

di t
i

where di = dim Hi(G, C). A theorem of Hopf shows that the cohomology algebra is a finite
product of l spheres of odd dimension where l is the rank of G. This theorem implies that

pG(t) =
l∏

i=1

(1 + t2ei +1).
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The positive integers {e1, e2, . . . , el} are called the exponents of G. One can also extract
the exponents from the root space decomposition of G. The connection with the invariant
polynomials is as follows: let H1,H2, . . . , Hl be independent, homogeneous, invariant
polynomials of degrees m1,m2, . . . ,ml . Then ei = mi − 1. The exponents of a simple
Lie group are given in the following list:

An−1: 1, 2, 3, . . . , n − 1
Bn,Cn: 1, 3, 5, . . . , 2n − 1
Dn: 1, 3, 5, . . . , 2n − 3, n − 1
G2: 1, 5
F4: 1, 5, 7, 11
E6: 1, 4, 5, 7, 8, 11
E7: 1, 5, 7, 9, 11, 13, 17
E8: 1, 7, 11, 13, 17, 19, 23, 29.

3. Finite, non-periodic An Toda lattice

In this section we review the classical Toda lattice before moving to the Dn case in section 4.
The Toda lattice is a completely integrable classical mechanical system consisting of n particles
on the line and subject to a system of springs which behave exponentially. The Hamiltonian
function of the system is

H(q1, . . . , qn, p1, . . . , pn) =
n∑

j=1

1

2
p2

j +
n−1∑
j=1

eqj −qj+1 (10)

where qj (t) is the position of the j th particle and pj (t) is the corresponding momentum.
Hamilton’s equations are

q̇j = pj ṗj = eqj−1−qj − eqj−qj+1 . (11)

To determine the set of independent functions {H1, . . . , Hn} which are constants of motion
for Hamilton’s equations, one uses Flaschka’s transformation:

ai = 1
2 e

1
2 (qi−qi+1) bi = − 1

2pi. (12)

Then,

ȧi = ai(bi+1 − bi) ḃi = 2
(
a2

i − a2
i−1

)
. (13)

These equations can be written as a Lax pair L̇ = [B,L], where L is the symmetric Jacobi
matrix

L =




b1 a1 0 · · · · · · 0

a1 b2 a2 · · · ...

0 a2 b3
. . .

...
. . .

. . .
...

...
. . .

. . . an−1

0 · · · · · · an−1 bn




(14)
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and

B =




0 a1 0 · · · · · · 0

−a1 0 a2 · · · ...

0 −a2 0
. . .

...
. . .

. . .
. . .

...
...

. . .
. . . an−1

0 · · · · · · −an−1 0




. (15)

It follows that the functions Hi = 1
i

tr Li are constants of motion.
Consider R2n with coordinates (q1, . . . , qn, p1, . . . , pn), the standard symplectic bracket

and the Flaschka transformation F : R2n → R2n−1 defined by

F : (q1, . . . , qn, p1, . . . , pn) → (a1, . . . , an−1, b1, . . . , bn). (16)

The standard symplectic bracket on R2n reduces, under the mapping F, to a linear bracket on
R2n−1 determined by

{ai, bi} = −ai {ai, bi+1} = ai (17)

all other brackets are zero. We denote this Poisson tensor by π1. The only Casimir is
H1 = b1 + b2 + · · · + bn. The Hamiltonian turns out to be H2 = 1

2 tr L2 and the functions Hj

are in involution.
There is also a quadratic bracket π2 which appeared in a paper of Adler [1] in 1979. The

defining relations for the new bracket π2 are:

{ai, ai+1} = 1
2aiai+1 {ai, bi} = −aibi

{ai, bi+1} = aibi+1 {bi, bi+1} = 2a2
i

(18)

all other brackets are zero. This bracket has det L as Casimir and H1 = trL is the Hamiltonian.
The eigenvalues of L are still in involution and

π2∇λj = λjπ1∇λj ∀j.

It easily follows that

π2∇Hj = π1∇Hj+1 ∀j. (19)

These relations are similar to the Lenard relations for the KdV equation. They show that the
Toda lattice is a bi-Hamiltonian system.

Since it was impossible to find a recursion operator for the non-periodic Toda lattice (at
least in Flaschka coordinates) a different method was used to generate invariants. The idea
was to define master symmetries, and use Lie derivatives to generate higher invariants.

We describe the construction following [6, 7]. We denote the master symmetries by Xn.
These vector fields generate an infinite sequence of contravariant 2-tensors πn, for n � 1. We
summarize the properties of Xn and πn.

Theorem 2.

(i) πn are all Poisson.
(ii) The functions Hn = 1

n
tr Ln are in involution with respect to all of the πn.

(iii) Xn(Hm) = (n + m)Hn+m.
(iv) LXn

πm = (m − n − 2)πn+m.
(v) πn∇Hl = πn−1∇Hl+1, where πn denotes the Poisson matrix of the tensor πn.
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To define the vector fields Xn we consider expressions of the form

L̇ = [B,L] + Ln. (20)

This equation is similar to a Lax equation, but in this case the eigenvalues satisfy λ̇ = λn

instead of λ̇ = 0.
There is another method of finding the master symmetries due to Fernandes [11] which

we describe briefly. The first step is to define a second Poisson bracket on the space of
canonical variables (q1, . . . , qn, p1, . . . , pn). This bracket appears in Das and Okubo [10] and
Fernandes [11]. We follow the notation from [11]. Let J0 be the symplectic bracket on R2n

and define J1 as follows:

{qi, qj } = 1 {pi, qi} = pi {pi, pi+1} = eqi−qi+1 (21)

all other brackets are zero. Also define

h0 =
n∑

i=1

pi h1 =
n∑

i=1

p2
i

2
+

n−1∑
i=1

eqi−qi+1 . (22)

Since we have a non-degenerate pair (J0, J1), there exists a recursion operator defined by
R = J1J

−1
0 . It follows easily that the vector field

Z0 =
n∑

i=1

n + 1 − 2i

2

∂

∂qi

+
n∑

i=1

pi

∂

∂pi

(23)

is a conformal symmetry for J0, J1 and h0 and therefore, Oevel’s theorem applies. The
constants in theorem 1 turn out to be λ = −1, µ = 0 and ν = 1. We end up with the following
relations:

[Zi, χj ] = jχi+j (24)

LZi
Jj = (j − i − 1)Ji+j (25)

[Zi,Zj ] = (j − i)Zi+j . (26)

Taking into account the way we defined the linear bracket π1 on R2n−1, the mapping F is a
Poisson mapping between J0 and π1. But it is also a Poisson mapping between J1 and π2.
In fact, the Poisson tensor J1 reduces, under the mapping F, to π2. The Hamiltonians h0 and
h1 correspond to the reduced Hamiltonians H1 and H2 respectively. The recursion operator
R cannot be reduced. Actually, it is easy to see that there exists no recursion operator in
the reduced space. The kernels of the two Poisson structures π1 and π2 are different and,
therefore, it is impossible to find an operator that maps one to the other.

The deformation relations (24)–(26) also reduce and we obtain the deformation relations
of theorem 2. Note that (24) gives a procedure for generating the exponents of a simple Lie
group of type An.

4. Bogoyavlensky–Toda systems of type DN

4.1. Definition of the systems

In this section we consider mechanical systems which generalize the finite, nonperiodic Toda
lattice. These systems correspond to Dynkin diagrams. It is well known that irreducible root
systems classify simple Lie groups. So, in this generalization for each simple Lie group there
exists a mechanical system of Toda type.
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The generalization is obtained from the following simple observation: in terms of the
natural basis qi of weights, the simple roots of An−1 are

q1 − q2, q2 − q3, . . . , qn−1 − qn.

On the other hand, the potential for the Toda lattice is of the form

eq1−q2 + eq2−q3 + · · · + eqn−1−qn .

We note that the angle between qi−1 − qi and qi − qi+1 is 2π
3 and the lengths of qi − qi+1 are

all equal. The Toda lattice corresponds to a Dynkin diagram of type An−1.
More generally, we consider potentials of the form

U = c1 ef1(q) + · · · + cl efl (q)

where c1, . . . , cl are constants, fi(q) is linear and l is the rank of the simple Lie group. For
each Dynkin diagram we construct a Hamiltonian system of Bogoyavlensky–Toda type. These
systems are interesting not only because they are integrable, but also for their fundamental
importance in the theory of semisimple Lie groups. For example, Kostant in [19] shows that
the integration of these systems and the theory of the finite-dimensional representations of
semisimple Lie groups are equivalent.

For reference, we give a complete list of the Hamiltonians for each simple Lie algebra.

An−1: H = 1

2

n∑
1

p2
j + eq1−q2 + · · · + eqn−1−qn

Bn: H = 1

2

n∑
1

p2
j + eq1−q2 + · · · + eqn−1−qn + eqn

Cn: H = 1

2

n∑
1

p2
j + eq1−q2 + · · · + eqn−1−qn + e2qn

Dn: H = 1

2

n∑
1

p2
j + eq1−q2 + · · · + eqn−1−qn + eqn−1+qn

G2: H = 1

2

3∑
1

p2
j + eq1−q2 + e−2q1+q2+q3

F4: H = 1

2

4∑
1

p2
j + eq1−q2 + eq2−q3 + eq3 + e

1
2 (q4−q1−q2−q3)

E6: H = 1

2

8∑
1

p2
j +

4∑
1

eqj−qj+1 + e−(q1+q2) + e
1
2 (−q1+q2+···+q7−q8)

E7: H = 1

2

8∑
1

p2
j +

5∑
1

eqj−qj+1 + e−(q1+q2) + e
1
2 (−q1+q2+···+q7−q8)

E8: H = 1

2

8∑
1

p2
j +

6∑
1

eqj−qj+1 + e−(q1+q2) + e
1
2 (−q1+q2+···+q7−q8).

4.2. A recursion operator for Dn Bogoyavlensky–Toda systems in Flaschka coordinates

In this subsection, we show that higher polynomial brackets exist also in the case of Dn

Bogoyavlensky–Toda systems. Using Flaschka coordinates, we will prove that these systems
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possess a recursion operator and we will construct an infinite sequence of compatible Poisson
brackets in which the constants of motion are in involution.

The Hamiltonian for Dn is

H = 1

2

n∑
1

p2
j + eq1−q2 + · · · + eqn−1−qn + eqn−1+qn n � 4. (27)

We make a Flaschka-type transformation, F : R2n → R2n defined by

F : (q1, . . . , qn, p1, . . . , pn) → (a1, . . . , an, b1, . . . , bn)

with

ai = 1
2 e

1
2 (qi−qi+1) i = 1, 2, . . . , n − 1 an = 1

2 e
1
2 (qn−1+qn)

bi = − 1
2pi i = 1, 2, . . . , n.

(28)

Then

ȧi = ai(bi+1 − bi) i = 1, 2, . . . , n − 1
ȧn = −an(bn−1 + bn)

ḃi = 2
(
a2

i − a2
i−1

)
i = 1, 2, . . . , n − 2 and i = n

ḃn−1 = 2
(
a2

n + a2
n−1 − a2

n−2

)
.

(29)

These equations can be written as a Lax pair L̇ = [B,L], where L is the symmetric matrix



b1 a1

a1
. . .

. . .

. . .
. . . an−1 −an 0

an−1 bn 0 an

−an 0 −bn −an−1

0 an −an−1
. . .

. . .

. . .
. . . −a1

−a1 −b1




(30)

and B is the skew-symmetric part of L (in the decomposition, lower Borel plus skew-
symmetric).

The mapping F : R2n → R2n, (qi, pi) → (ai, bi), defined by (28), transforms the
standard symplectic bracket J0 into another symplectic bracket π1 given by

{ai, bi} = −ai i = 1, 2, . . . , n

{ai, bi+1} = ai i = 1, 2, . . . , n − 1
{an, bn−1} = −an.

(31)

We obtain a hierarchy of invariant polynomials, which we denote by

H2,H4, . . . , H2n, . . .

defined by H2i = 1
2i

Tr L2i . The degrees of the first n − 1 (independent) polynomials are
2, 4, . . . , 2n − 2 and the exponents of the corresponding Lie group are 1, 3, . . . , 2n − 3. We
also define

Pn =
√

det L.

Since L is a 2n × 2n matrix, the degree of det L is 2n and therefore the degree of Pn is n. The
corresponding exponent is n − 1.
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We look for a bracket π3 which satisfies

π3∇H2 = π1∇H4. (32)

We define the following homogeneous cubic bracket π3 whose non-zero terms are:
{ai, ai+1} = aiai+1bi+1 i = 1, 2, . . . , n − 2

{an−2, an} = an−2anbn−1

{an−1, an} = 2an−1anbn

{ai, bi} = −ai

(
b2

i + a2
i

)
i = 1, 2, . . . , n − 2

{an−1, bn−1} = −an−1
(
a2

n−1 + 3a2
n + b2

n−1

)

{an, bn} = −an

(
a2

n + b2
n − a2

n−1

)

{ai, bi+1} = ai

(
a2

i + b2
i+1

)
i = 1, 2, . . . , n − 2

{an−1, bn} = an−1
(
a2

n−1 + b2
n − a2

n

)

{ai, bi+2} = aia
2
i+1 i = 1, 2, . . . , n − 3

{an−2, bn} = an−2
(
a2

n−1 − a2
n

)

{ai, bi−1} = −a2
i−1ai i = 2, 3, . . . , n − 1

{an, bn−2} = −a2
n−2an

{an, bn−1} = −an

(
3a2

n−1 + a2
n + b2

n−1

)

{bi, bi+1} = 2a2
i (bi + bi+1) i = 1, 2, . . . , n − 2

{bn−1, bn} = 2a2
n−1(bn−1 + bn) + 2a2

n(bn − bn−1).

(33)

We summarize the properties of this new bracket in the following:

Theorem 3. The bracket π3 satisfies:

(1) π3 is Poisson.
(2) π3 is compatible with π1.

Define R = π3π
−1
1 . Then R is a recursion operator. We obtain a hierarchy

π1, π3, π5, . . .

consisting of compatible Poisson brackets of odd degree in which the constants of motion
are in involution.

(3) All the H2i and Pn are in involution with respect to all the brackets π1, π3, π5, . . . .

(4) πj+2∇H2i = πj∇H2i+2 ∀i, j.

The proof of (1) is a straightforward verification of the Jacobi identity. We will see later, in
the next subsection, that π3 is the Lie derivative of π1 in the direction of a master symmetry
and this fact makes π1, π3 compatible. (4) follows from properties of the recursion operator.
(3) is a consequence of (4) (see for example [7], p 5524 for a method of proof). The only part
which is not obvious is the involution of Pn with Hn which will be proved at the end of the
next subsection using master symmetries.

4.3. Master symmetries

We would like to make some observations concerning master symmetries. Due to the presence
of a recursion operator, we will use the approach of Oevel. We define Z0 to be the Euler vector
field

Z0 =
n∑

i=1

ai

∂

∂ai

+ bi

∂

∂bi

.
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We define the master symmetries Zi by

Zi = RiZ0.

For obvious reasons we use the notation

X2i = Zi hi = H2i+2 �i = π2i+1 ψi = χ2i+2 i = 0, 1, 2, . . .

where χ2i denotes the Hamiltonian vector field generated by H2i , with respect to π1. This
notation is convenient since X2 is a master symmetry which raises the degrees of invariants
and Poisson tensors by 2 each time. One calculates easily that

LZ0�0 = −�0 LZ0�1 = �1 LZ0h0 = 2h0.

Therefore Z0 is a conformal symmetry for �0,�1 and h0. The constants appearing in Oevel’s
theorem are λ = −1 , µ = 1 and ν = 2. Therefore we obtain

[Zi,ψj ] = (1 + 2j) ψi+j ⇐⇒ [X2i , χ2j+2] = (1 + 2j)χ2(i+j+1) (34)

[Zi,Zj ] = 2(j − i)Zi+j ⇐⇒ [X2i , X2j ] = 2(j − i)X2(i+j) (35)

LZi
(�j ) = (2j − 2i − 1)�i+j ⇐⇒ LX2i

(π2j+1) = (2j − 2i − 1)π2(i+j)+1 (36)

Zi(hj ) = (2 + 2i + 2j)hi+j ⇐⇒ X2i (H2j ) = 2(i + j)H2(i+j). (37)

Remark 1. The relation (36) implies that LX2(π1) = −3π3 and therefore π3 is the Lie
derivative of π1 in the direction of a master symmetry. This makes π1 compatible with π3

(see [7], p 5518).

Remark 2. The relation (34) gives a procedure for generating almost all the exponents. As
we mentioned in the introduction, the last exponent is generated by the application of the
conformal symmetry on the Hamiltonian vector field corresponding to the Pfaffian of the
Jacobi matrix.

It is interesting to note that one can obtain the master symmetry X2 by using the matrix
equation

L̇ = [B,L] + L3 (38)

where L is the Lax matrix (30) and B is the skew-symmetric matrix defined as follows:

B =




0 x1 y1 0

−x1 0 x2 y2
. . .

−y1 −x2 0
. . .

. . . 0 0

0 −y2
. . .

. . . xn−2 yn−2 w

.. .
. . . −xn−2 0 xn−1 yn−1 0
0 −yn−2 −xn−1 0 0 −yn−1 −w

−w −yn−1 0 0 −xn−1 −yn−2 0

0 yn−1 xn−1 0 −xn−2
. . .

. . .

w yn−2 xn−2
. . .

. . . −y2 0

0 0
. . .

. . . 0 −x2 −y1

. . . y2 x2 0 −x1

0 y1 x1 0
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where

xi = ai




i−1∑
j=1

bj + (i + 1 − n) (bi + bi+1)


 i = 1, 2, . . . , n − 1

yi = (i + 1 − n) aiai+1 i = 1, 2, . . . , n − 2

yn−1 = −an

n−2∑
j=1

bj

w = an−2an.

The matrix B was chosen in such a way that both sides of (38) have the same form. The
components of the vector field X2 are defined by the right-hand side of (38).

Finally we note the action of the first master symmetry on Pn = √
det L:

X2(Pn) = PnH2.

Remark. This last result should be expected since the eigenvalues of L satisfy λ̇ = λ3 under
(38). Therefore,

X2(Pn) = X2(
√

det L)

= X2(
√

λ1 · · ·λn)

= 1

2
(λ1 · · · λn)

− 1
2 (λ̇1λ2 · · · λn + λ1λ̇2 · · · λn + · · · + λ1 · · · λ̇n)

= 1

2
√

det L

(
λ3

1λ2 · · · λn + λ1λ
3
2 · · ·λn + · · · + λ1 · · · λ3

n

)

= det L

2
√

det L

(
λ2

1 + λ2
2 + · · · + λ2

n

)

=
√

det L

(
λ2

1 + λ2
2 + · · · + λ2

n

)
2

= PnH2.

We conclude this subsection by proving the involution of Hi with Pn. It is clearly enough
to show the involution of the eigenvalues of L since Pn and Hi are both functions of the
eigenvalues. It is well known that the eigenvalues are in involution with respect to the
symplectic bracket π1. We will give here a proof based on the Lenard relations (32). Let λ

and µ be two distinct eigenvalues and let U,V be the gradients of λ and µ respectively. We
use the notation { , } to denote the bracket π1 and 〈 , 〉 the standard inner product. The Lenard
relations (32) translate into π3U = λ2π1U and π3V = µ2π1V . Therefore,

{λ,µ} = 〈π1U,V 〉

= 1

λ2
〈π3U,V 〉

= − 1

λ2
〈U,π3V 〉

= − 1

λ2
〈U,µ2π1V 〉

= −µ2

λ2
〈U,π1V 〉
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= µ2

λ2
〈π1U,V 〉

= µ2

λ2
{λ,µ}.

Therefore, {λ,µ} = 0. To show the involution with respect to all brackets π2j+1 and in view of
(36) it is enough to show the following: let f1, f2 be two functions in involution with respect
to the Poisson bracket π , let X be a vector field such that X(fi) = f 3

i for i = 1, 2. Define a
Poisson bracket w by w = LXπ . Then the functions f1, f2 remain in involution with respect
to the bracket w. The proof follows trivially if we write w = LXπ in Poisson form:

{f1, f2}w = X{f1, f2}π − {f1,X(f2)}π − {X(f1), f2}π .

Remark. We have to point out that unlike the case of Bn and Cn the cubic bracket (33) was
discovered not by manipulating the left-hand side of (32) but through the use of the master
symmetry X2. In other words, one constructs the master symmetry X2 using (38) and then
computes π3 = − 1

3LX2π1.

4.4. A recursion operator for Dn Toda systems in natural (q, p) coordinates

We now define a bi-Hamiltonian formulation for Dn Bogoyavlensky–Toda systems in
natural (qi, pi) coordinates. This bracket is simply the pull-back of π3 under the Flaschka
transformation (28). After some tedious calculation, we obtain the following bracket in (qi, pi)

coordinates:

{qi, qj } = −2pj i < j

{qi, pi} = p2
i + 2 eqi−qi+1 i = 1, 2, . . . , n − 2

{qn−1, pn−1} = p2
n−1 + 2 eqn−1−qn + 2 eqn−1+qn

{qn, pn} = p2
n

{qi, pi−1} = eqi−1−qi i = 2, 3, . . . , n − 1

{qn, pn−1} = eqn−1−qn − eqn−1+qn

{qi, pi+1} = −eqi−qi+1 + 2 eqi+1−qi+2 i = 1, 2, . . . , n − 3

{qn−2, pn−1} = −eqn−2−qn−1 + 2 eqn−1−qn + 2 eqn−1+qn

{qn−1, pn} = −eqn−1−qn + eqn−1+qn

{qi, pj } = −2 eqj−1−qj + 2 eqj−qj+1 1 � i < j − 1 � n − 3

{qi,pn−1} = −2 eqn−2−qn−1 + 2 eqn−1−qn + 2 eqn−1+qn i = 1, 2, . . . , n − 3

{qi, pn} = −2 eqn−1−qn + 2 eqn−1+qn i = 1, 2, . . . , n − 2

{pi, pi+1} = −eqi−qi+1(pi + pi+1) i = 1, 2, . . . , n − 2

{pn−1, pn} = −(pn−1 + pn) eqn−1−qn + (pn−1 − pn) eqn−1+qn

(39)

and all other brackets are zero. Denote this Poisson tensor by J1 and let J0 be the standard
symplectic bracket. A simple computation leads to the following.

Theorem 4. The bracket J1 satisfies:

1. J1 is Poisson.
2. J1 is compatible with J0.
3. The mapping F given by (28) is a Poisson morphism between J1 and the cubic bracket π3.
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Thus, in (q, p) coordinates we also have a non-degenerate pair (J0, J1) for Dn Bogoyavlensky–
Toda and therefore we may define a recursion operator R = J1J

−1
0 . We have then a hierarchy

of mutually compatible Poisson tensors defined by Ji = RiJ0.
The vector field

Z0 =
n∑

i=1

pi

∂

∂pi

+
n∑

i=1

2(n − i)
∂

∂qi

(40)

is a conformal symmetry for the Poisson tensors J0 and J1 and for the Hamiltonian

h0 = 1

2

n∑
1

p2
j + eq1−q2 + · · · + eqn−1−qn + eqn−1+qn . (41)

We compute

LZ0J0 = −J0 LZ0J1 = J1 LZ0h0 = 2h0. (42)

So Oevel’s theorem applies. With Zi = RiZ0 , χ0 = χh0 and χi = Riχ0 one calculates easily
that

(a) [Zi, χj ] = (1 + 2j)χi+j

(b) [Zi,Zj ] = 2(j − i)Zi+j

(c) LZi
(Jj ) = (2j − 2i − 1)Ji+j .

Note that (a) gives the exponents (except one) for a Lie group of type Dn.
The action of the first master symmetry on Pn is the same as in Flaschka coordinates:

Z1(Pn) = h0Pn. (43)

Finally, we calculate that

[Z0, χPn
] = (n − 1)χPn

(44)

producing the last exponent.
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